Activation and inhibition of the calcium‐release channel of isolated skeletal muscle heavy sarcoplasmic reticulum
Open Access
- 1 December 1990
- journal article
- Published by Wiley in European Journal of Biochemistry
- Vol. 194 (2), 549-559
- https://doi.org/10.1111/j.1432-1033.1990.tb15651.x
Abstract
Calcium-independent calcium efflux from heavy sarcoplasmic reticulum (HSR) of skeletal muscle was found to be biphasic, with half-times of 2-6 s and 200-400 s for the first and second phase, respectively. Calcium-, AMP- and caffeine-induced calcium efflux was triphasic, with half-times of 0.05-0.2 s, 1-5 s and 100-400 s for the first, second and third phases, respectively. This very fast first phase is certainly due to calcium efflux via the calcium-release channel of HSR vesicles. Both ruthenium red and neomycin inhibited the first phase of the calcium-independent calcium efflux and the first phase of the calcium-, AMP- or caffeine-induced calcium efflux completely, whilst the second phase was fully inhibited by ruthenium red only and partially inhibited by neomycin at high concentrations, indicating that the second phase of calcium release also occurs via the calcium-release channel. Various models for calcium efflux through the release channel have been tested by simulation. Activation and inhibition of the channel-mediated calcium efflux from HSR cannot be explained by two states of the calcium-release channel (open or closed), but requires the existence of at least three states. A channel with one open state and two closed states, resulting in a rapid inactivation, is the most simple model compatible with the experimental data. According to this model, activation is assumed to reduce inactivation of the channel, whilst inhibition assumes an acceleration of channel inactivation. This mechanism most likely applies to neomycin. An additional open-blocked state has to be assumed for inhibition by ruthenium red.Keywords
This publication has 30 references indexed in Scilit:
- Drug-induced calcium release from heavy sarcoplasmic reticulum of skeletal muscleBiochimica et Biophysica Acta (BBA) - Biomembranes, 1988
- Inhibition of calcium release from skeletal muscle sarcoplasmic reticulum by calmodulinBiochimica et Biophysica Acta (BBA) - Biomembranes, 1988
- Calcium release from calmodulin and its C‐terminal or N‐terminal halves in the presence of the calmodulin antagonists phenoxybenzamine and melittin measured by stopped‐flow fluorescence with Quin 2 and intrinsic tyrosineEuropean Journal of Biochemistry, 1986
- Evidence of a role for calmodulin in the regulation of calcium release from skeletal muscle sarcoplasmic reticulumBiochemistry, 1986
- Calcium release from intact calmodulin and calmodulin fragment 78–148 measured by stopped‐flow fluorescence with 2‐p‐toluidinylnaphthalene sulfonateEuropean Journal of Biochemistry, 1985
- Sarcoplasmic reticulum contains adenine nucleotide-activated calcium channelsNature, 1985
- Inhibitors of Ca2+ release from the isolated sarcoplasmic reticulum. I. Ca2+ channel blockersBiochimica et Biophysica Acta (BBA) - Biomembranes, 1985
- Rapid ionic modifications during the aequorin-detected calcium transient in a skinned canine cardiac Purkinje cell.The Journal of general physiology, 1985
- Energetics and Electrogenicity of the Sarcoplasmic Reticulum Calcium PumpAnnual Review of Physiology, 1983
- Ca2+-induced hydrophobic site on calmodulin: Application for purification of calmodulin by phenyl-Sepharose affinity chromatographyBiochemical and Biophysical Research Communications, 1982