Simulation of Real-Time Frequency Estimators for Pulsed Doppler Systems

Abstract
Four time-domain oriented, real-time frequency estimators, based on the detection of phase, zero-crossings, instantaneous frequency or autocorrelation, were simulated on a digital computer and subjected to computer generated Doppler signals, enabling the investigation of the influence of spectral shape, filtering, frequency shift, noise and quantization. Three estimators, the autocorrelator as well as the instantaneous frequency detector and the autocorrelator, both with extended frequency range, appeared to be very accurate. They exhibit a bias in the estimator output of less than 2 percent over a wide frequency range, the former up to nearly the Nyquist frequency, the latter two beyond, even for skew spectra and under poor signal conditions regarding bandwidth and noise.

This publication has 17 references indexed in Scilit: