Abstract
The dipole absorptionspectrum of an electron in fluid helium is calculated by the maximum entropy method (MEM) numerical inversion of quantum Monte Carlo data obtained from a path integral Monte Carlo (PIMC) simulation at 309 K at the reduced densities ρ*=0.1, 0.3, 0.5, 0.7, and 0.9. Our results agree with the RISM‐polaron theory results of Nichols and Chandler [A. L. Nichols III and D. Chandler, J. Chem. Phys. 87, 6671 (1987)] and the grid wave function calculation of Coker and Berne [D. F. Coker and B. J. Berne, J. Chem. Phys. 89, 2128 (1988)]. The method generated the expected long high frequency tail and the low density zero‐frequency intensity caused by high conductivity. The method has also been tested by comparing the MEMabsorptionspectrum to the analytical spectrum of an electron confined in a spherical cavity of fluctuating radius, a model for a solvated electron in a localized state.