Progress and prospects: Zinc-finger nucleases as gene therapy agents
- 11 September 2008
- journal article
- review article
- Published by Springer Nature in Gene Therapy
- Vol. 15 (22), 1463-1468
- https://doi.org/10.1038/gt.2008.145
Abstract
Zinc-finger nucleases (ZFNs) are powerful tools for experimental gene manipulation. A number of recent papers have shown how this technology can be applied effectively to models of human gene therapy. Significant target genes and useful methods of ZFN delivery have been reported. Important strides have been made in minimizing toxic side effects observed with some ZFNs, which bodes well for their ultimate safety. New tools are available for the design and testing of ZFNs for new target genes. Applications of ZFNs to stem cells have been described, and genuine gene therapy trials appear to be on the immediate horizon.Keywords
This publication has 22 references indexed in Scilit:
- Rapid “Open-Source” Engineering of Customized Zinc-Finger Nucleases for Highly Efficient Gene ModificationMolecular Cell, 2008
- Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleasesNature Biotechnology, 2008
- Development of a single-chain, quasi-dimeric zinc-finger nuclease for the selective degradation of mutated human mitochondrial DNANucleic Acids Research, 2008
- Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleasesNature Biotechnology, 2008
- Targeted gene inactivation in zebrafish using engineered zinc-finger nucleasesNature Biotechnology, 2008
- Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleasesProceedings of the National Academy of Sciences, 2008
- An improved zinc-finger nuclease architecture for highly specific genome editingNature Biotechnology, 2007
- Targeted gene addition into a specified location in the human genome using designed zinc finger nucleasesProceedings of the National Academy of Sciences, 2007
- Induction and repair of zinc-finger nuclease-targeted double-strand breaks in Caenorhabditis elegans somatic cellsProceedings of the National Academy of Sciences, 2006
- Zinc Finger Tools: custom DNA-binding domains for transcription factors and nucleasesNucleic Acids Research, 2006