Abstract
A part of the large-scale thermodynamic forcing of the upper ocean is examined by relating monthly anomalous latent and sensible heat flux to changes in sea surface temperature (SST) anomalies over the North Atlantic and North Pacific. The fluxes are estimated using bulk formulas from a set of about four decades of marine observations from the COADS dataset from 1946 to 1986. Monthly anomalies are constructed by removing the long-term monthly means. The latent and sensible flux anomalies are strongly correlated over most of the ocean, so they are considered together as a sum. The heat flux estimates contain large spatial-scale anomalies consistent with both atmospheric circulation anomalies and with month-to-month changes (tendencies) in monthly SST anomalies. The monthly flux anomalies and the SST anomaly tendency are significantly correlated over much of the oceans, with anomalous positive/negative fluxes associated with anomalous cooling/warming. The connection between the flux and the SST ten... Abstract A part of the large-scale thermodynamic forcing of the upper ocean is examined by relating monthly anomalous latent and sensible heat flux to changes in sea surface temperature (SST) anomalies over the North Atlantic and North Pacific. The fluxes are estimated using bulk formulas from a set of about four decades of marine observations from the COADS dataset from 1946 to 1986. Monthly anomalies are constructed by removing the long-term monthly means. The latent and sensible flux anomalies are strongly correlated over most of the ocean, so they are considered together as a sum. The heat flux estimates contain large spatial-scale anomalies consistent with both atmospheric circulation anomalies and with month-to-month changes (tendencies) in monthly SST anomalies. The monthly flux anomalies and the SST anomaly tendency are significantly correlated over much of the oceans, with anomalous positive/negative fluxes associated with anomalous cooling/warming. The connection between the flux and the SST ten...