Novel approaches to developing new antibiotics for bacterial infections
- 1 December 2007
- journal article
- review article
- Published by Wiley in British Journal of Pharmacology
- Vol. 152 (8), 1147-1154
- https://doi.org/10.1038/sj.bjp.0707432
Abstract
Antibiotics are an essential part of modern medicine. The emergence of antibiotic‐resistant mutants among bacteria is seemingly inevitable, and results, within a few decades, in decreased efficacy and withdrawal of the antibiotic from widespread usage. The traditional answer to this problem has been to introduce new antibiotics that kill the resistant mutants. Unfortunately, after more than 50 years of success, the pharmaceutical industry is now producing too few antibiotics, particularly against Gram‐negative organisms, to replace antibiotics that are no longer effective for many types of infection. This paper reviews possible new ways to discover novel antibiotics. The genomics route has proven to be target rich, but has not led to the introduction of a marketed antibiotic as yet. Non‐culturable bacteria may be an alternative source of new antibiotics. Bacteriophages have been shown to be antibacterial in animals, and may find use in specific infectious diseases. Developing new antibiotics that target non‐multiplying bacteria is another approach that may lead to drugs that reduce the emergence of antibiotic resistance and increase patient compliance by shortening the duration of antibiotic therapy. These new discovery routes have given rise to compounds that are in preclinical development, but, with one exception, have not yet entered clinical trials. For the time being, the majority of new antibiotics that reach the marketplace are likely to be structural analogues of existing families of antibiotics or new compounds, both natural and non‐natural which are screened in a conventional way against live multiplying bacteria.British Journal of Pharmacology (2007) 152, 1147–1154; doi:10.1038/sj.bjp.0707432; published online 20 August 2007Keywords
This publication has 116 references indexed in Scilit:
- An obesity-associated gut microbiome with increased capacity for energy harvestNature, 2006
- Transposon-aided capture (TRACA) of plasmids resident in the human gut mobile metagenomeNature Methods, 2006
- Conserved Small Non-coding RNAs that belong to the σE Regulon: Role in Down-regulation of Outer Membrane ProteinsJournal of Molecular Biology, 2006
- Application of Bacteriophages To Control Intestinal Escherichia coli O157:H7 Levels in RuminantsApplied and Environmental Microbiology, 2006
- Targeting Antibacterial Agents by Using Drug-Carrying Filamentous BacteriophagesAntimicrobial Agents and Chemotherapy, 2006
- Determining the antibiotic resistance potential of the indigenous oral microbiota of humans using a metagenomic approachFEMS Microbiology Letters, 2006
- Comparative Genomics of Multidrug Resistance in Acinetobacter baumanniiPLoS Genetics, 2006
- Therapeutic Effects of Bacteriophage Cpl-1 Lysin against Streptococcus pneumoniae Endocarditis in RatsAntimicrobial Agents and Chemotherapy, 2005
- Lysis-deficient bacteriophage therapy decreases endotoxin and inflammatory mediator release and improves survival in a murine peritonitis modelSurgery, 2005
- The GlycylcyclinesDrugs, 2004