Surface roughness predictive modeling: neural networks versus regression

Abstract
Surface roughness plays an important role in product quality and manufacturing process planning. This research focuses on developing an empirical model for surface roughness prediction in finish turning. The model considers the following working parameters: work-piece hardness (material), feed, cutter nose radius, spindle speed and depth of cut. Two competing data mining techniques, nonlinear regression analysis and computational neural networks, are applied in developing the empirical models. The values of surface roughness predicted by these models are then compared with those from some of the representative models in the literature. Metal cutting experiments and tests of hypothesis demonstrate that the models developed in this research have a satisfactory goodness of fit. It has also presented a rigorous procedure for model validation and model comparison. In addition, some future research directions are outlined.

This publication has 24 references indexed in Scilit: