Changes in expression and activity of glutathione S‐transferase in different organs of schistosoma haematobium‐infected hamster

Abstract
Schistosomiasis is a major health problem in many subtropical developing countries, causing a number of serious pathologies, including bladder cancer. Most of the toxic compounds formed as a result of these infestations are derived either exogenously or formed endogenously and can be conjugated with glutathione (GSH) via glutathione S‐transferase (GST). The present study investigates the effect of Schistosma haematobium infection on the activity of GST and glutathione reductase (GR) and levels of glutathione and free radicals (measured as thiobarbituric acid reactive substances) in different organs of the male hamster. The total activity of GST was increased in several organs; in kidney by 50 and 46% at 6 and 10 weeks postinfection, respectively, and in bladder tissues by 169, 23, and 130% at 2, 4, and 6 weeks postinfection, respectively. In support of this, the expression of GST isozymes was also induced in kidney and bladder tissues at early stages (2, 4, and 6 weeks) and reduced at the later stages of infection (8 and 10 weeks). In contrast, the expression of these isozymes was decreased in the spleen and liver at 2, 4, 6, 8, and 10 weeks postinfection. Also, such activity was decreased in lungs by 74 and 78% and in bladders by 65 and 72% at 8 and 10 weeks postinfection, respectively. GSH levels increased in lungs by 95, 40, and 56% at 2, 4, and 6 weeks and in spleen by 26 and 74% at 4 and 6 weeks, respectively, but decreased at later stages of S. haematobium infection in these organs. The depletion of GSH levels also occurred in bladders by 72 and 54% at 8 and 10 weeks postinfection, respectively. The activity of GR was increased in the livers, lungs, and kidneys of the S. haematobium‐infected hamster. TBARS also increased in the lung by 14, 65, 53, 828, and 624% and in the kidney by 64, 29, 87, 190, and 111%, and in the bladder by 216, 23, 1468, 528, and 1025% at 2, 4, 6, 8, and 10 weeks postinfection, respectively. This study indicates that low GST expression and high levels of free radicals could provide new evidence for damage to the bladder and other organs as a result of S. haematobium infection. © 2003 Wiley Periodicals, Inc. J Biochem Mol Toxicol 17:138–145, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.10071

This publication has 40 references indexed in Scilit: