Exact time-dependent quantum mechanical dissociation dynamics of I2He: Comparison of exact time-dependent quantum calculation with the quantum time-dependent self-consistent field (TDSCF) approximation

Abstract
The vibrational predissociation dynamics of a collinear model of the I2(v)He cluster is studied by numerically exact time-dependent quantum mechanics, and by the time-dependent self-consistent field (TDSCF) approximation. The time evolution for the initial excitation levels v=5, 11, 22 is explored. Excellent agreement is found between the TDSCF and the exact evolution of the wave packet; in particular the approximation reproduces well the dephasing events in the dynamics, and the measurable predissociation lifetimes. The results are very encouraging as to the applicability of quantum TDSCF as a quantitative tool in the study of van der Waals predissociation dynamics.