Recombinant Human Parathyroid Hormone (1–34) [Teriparatide] Improves Both Cortical and Cancellous Bone Structure
Top Cited Papers
- 1 November 2003
- journal article
- clinical trial
- Published by Oxford University Press (OUP) in Journal of Bone and Mineral Research
- Vol. 18 (11), 1932-1941
- https://doi.org/10.1359/jbmr.2003.18.11.1932
Abstract
Histomorphometry and microCT of 51 paired iliac crest biopsy specimens from women treated with teriparatide revealed significant increases in cancellous bone volume, cancellous bone connectivity density, cancellous bone plate-like structure, and cortical thickness, and a reduction in marrow star volume. We studied the ability of teriparatide (rDNA origin) injection [rhPTH(1-34), TPTD] to improve both cancellous and cortical bone in a subset of women enrolled in the Fracture Prevention Trial of postmenopausal women with osteoporosis after a mean treatment time of 19 months. This is the first report of a biopsy study after treatment with teriparatide having a sufficient number of paired biopsy samples to provide quantitative structural data. Fifty-one paired iliac crest bone biopsy specimens (placebo [n = 19], 20 microg teriparatide [n = 18], and 40 microg teriparatide [n = 14]) were analyzed using both two-dimensional (2D) histomorphometry and three-dimensional (3D) microcomputed tomography (microCT). Data for both teriparatide treatment groups were pooled for analysis. By 2D histomorphometric analyses, teriparatide significantly increased cancellous bone volume (median percent change: teriparatide, 14%; placebo, -24%; p = 0.001) and reduced marrow star volume (teriparatide, -16%; placebo, 112%; p = 0.004). Teriparatide administration was not associated with osteomalacia or woven bone, and there were no significant changes in mineral appositional rate or wall thickness. By 3D cancellous and cortical bone structural analyses, teriparatide significantly decreased the cancellous structure model index (teriparatide, -12%; placebo, 7%; p = 0.025), increased cancellous connectivity density (teriparatide, 19%; placebo, - 14%; p = 0.034), and increased cortical thickness (teriparatide, 22%; placebo, 3%; p = 0.012). These data show that teriparatide treatment of postmenopausal women with osteoporosis significantly increased cancellous bone volume and connectivity, improved trabecular morphology with a shift toward a more plate-like structure, and increased cortical bone thickness. These changes in cancellous and cortical bone morphology should improve biomechanical competence and are consistent with the substantially reduced incidences of vertebral and nonvertebral fractures during administration of teriparatide.Keywords
This publication has 43 references indexed in Scilit:
- Anabolic Effects of Human Biosynthetic Parathyroid Hormone Fragment (1–34), LY333334, on Remodeling and Mechanical Properties of Cortical Bone in RabbitsJournal of Bone and Mineral Research, 1999
- Randomised controlled study of effect of parathyroid hormone on vertebral-bone mass and fracture incidence among postmenopausal women on oestrogen with osteoporosisThe Lancet, 1997
- Effects of intermittent hPTH(1–34) alone and in combination with 1,25(OH)2d3 or risedronate on endosteal bone remodeling in canine cancellous and cortical boneJournal of Bone and Mineral Research, 1996
- Bone structure in postmenopausal hyperparathyroid, osteoporotic, and normal womenJournal of Bone and Mineral Research, 1995
- Unbiased estimation of vertebral trabecular connectivity in calcium-restricted ovariectomized minipigsBone, 1995
- Trabecular architecture in iliac crest bone biopsies: Infra-individual variability in structural parameters and changes with ageBone, 1988
- Bone histomorphometry: Standardization of nomenclature, symbols, and units: Report of the asbmr histomorphometry nomenclature committeeJournal of Bone and Mineral Research, 1987
- Restoration of spinal bone in osteoporotic men by treatment with human parathyroid hormone (1–34) and 1,25-dihydroxyvitamin DJournal of Bone and Mineral Research, 1986
- Anabolic effect of human parathyroid hormone fragment on trabecular bone in involutional osteoporosis: a multicentre trial.BMJ, 1980
- The relative contribution of trabecular and cortical bone to the strength of human lumbar vertebraeCalcified Tissue International, 1969