Regulation of serotonin-facilitated dopamine release in vivo: The role of protein kinase A activating transduction mechanisms

Abstract
Recent neuroanatomical, biochemical, and electrophysiological studies suggest that serotonin (5HT) can modulate dopaminergic function at the level of the cell body and the nerve terminal. The receptor subtypes, regulatory processes, and intracellular transduction mechanisms mediating these interactions remain to be characterized. The potential involvement of cAMP in mediating 5HT-facilitated increases in extracellular levels of striatal dopamine (DA) was assessed using in vivo microdialysis. Local infusion of 0.4 nmol 5HT delivered via probes located in the anterior striata of chloral hydrate-anesthetized male rats significantly increased extracellular DA levels to approximately 700% of basal control levels. Local, intrastriatal infusion of either 2 nmol forskolin, 2 nmol rolipram, 100 nmol isobutylmethylxanthine, or 200 nmol dibutyryl cAMP significantly increased basal DA levels to 28 ± 3%, 143 ± 5%, 56 ± 7%, and 52 ± 3% above control levels, respectively. Additionally, coperfusion of any of these agents with 5HT significantly decreased the 5HT-facilitory effect on DA release to approximately 50% of observed 5HT controls. The current results suggest a role for the cAMP second-messenger systems in modulating 5HT-facilitated DA release.