An automated method for finding molecular complexes in large protein interaction networks
Top Cited Papers
Open Access
- 13 January 2003
- journal article
- research article
- Published by Springer Nature in BMC Bioinformatics
- Vol. 4 (1), 2
- https://doi.org/10.1186/1471-2105-4-2
Abstract
Recent advances in proteomics technologies such as two-hybrid, phage display and mass spectrometry have enabled us to create a detailed map of biomolecular interaction networks. Initial mapping efforts have already produced a wealth of data. As the size of the interaction set increases, databases and computational methods will be required to store, visualize and analyze the information in order to effectively aid in knowledge discovery. This paper describes a novel graph theoretic clustering algorithm, "Molecular Complex Detection" (MCODE), that detects densely connected regions in large protein-protein interaction networks that may represent molecular complexes. The method is based on vertex weighting by local neighborhood density and outward traversal from a locally dense seed protein to isolate the dense regions according to given parameters. The algorithm has the advantage over other graph clustering methods of having a directed mode that allows fine-tuning of clusters of interest without considering the rest of the network and allows examination of cluster interconnectivity, which is relevant for protein networks. Protein interaction and complex information from the yeast Saccharomyces cerevisiae was used for evaluation. Dense regions of protein interaction networks can be found, based solely on connectivity data, many of which correspond to known protein complexes. The algorithm is not affected by a known high rate of false positives in data from high-throughput interaction techniques. The program is available from ftp://ftp.mshri.on.ca/pub/BIND/Tools/MCODE.Keywords
This publication has 42 references indexed in Scilit:
- Analyzing yeast protein–protein interaction data obtained from different sourcesNature Biotechnology, 2002
- Self-organization and identification of Web communitiesComputer, 2002
- Comparative assessment of large-scale data sets of protein–protein interactionsNature, 2002
- Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometryNature, 2002
- Functional organization of the yeast proteome by systematic analysis of protein complexesNature, 2002
- Crystal Structure of Arp2/3 ComplexScience, 2001
- A comprehensive two-hybrid analysis to explore the yeast protein interactomeProceedings of the National Academy of Sciences, 2001
- A clustering algorithm based on graph connectivityInformation Processing Letters, 2000
- A Database for Cell Signaling NetworksJournal of Computational Biology, 1998
- An algorithm for drawing general undirected graphsInformation Processing Letters, 1989