SSM/I Rain Retrievals within a Unified All-Weather Ocean Algorithm

Abstract
A new method for the physical retrieval of rain rates from satellite microwave radiometers is presented. The method is part of a unified ocean parameter retrieval algorithm that is based on the fundamental principles of radiative transfer. The algorithm simultaneously finds near-surface wind speed W, columnar water vapor V, columnar cloud liquid water L, rain rate R, and effective radiating temperature TU for the upwelling radiation. Comparisons with radiosondes demonstrate that the algorithm is able to retrieve water vapor when rain is present. For rain rates from 1 to 15 mm h−1, the rms difference between the retrieved water vapor and the radiosonde value is 5 mm. A novel feature of the rain retrieval method is a beamfilling correction that is based upon the ratio of the retrieved liquid water absorption coefficients at 37 and 19 GHz. This spectral ratio decreases by about 40% when heavy and light rain coexist within the SSM/I footprint as compared to the case of uniform rain. This correction i... Abstract A new method for the physical retrieval of rain rates from satellite microwave radiometers is presented. The method is part of a unified ocean parameter retrieval algorithm that is based on the fundamental principles of radiative transfer. The algorithm simultaneously finds near-surface wind speed W, columnar water vapor V, columnar cloud liquid water L, rain rate R, and effective radiating temperature TU for the upwelling radiation. Comparisons with radiosondes demonstrate that the algorithm is able to retrieve water vapor when rain is present. For rain rates from 1 to 15 mm h−1, the rms difference between the retrieved water vapor and the radiosonde value is 5 mm. A novel feature of the rain retrieval method is a beamfilling correction that is based upon the ratio of the retrieved liquid water absorption coefficients at 37 and 19 GHz. This spectral ratio decreases by about 40% when heavy and light rain coexist within the SSM/I footprint as compared to the case of uniform rain. This correction i...