Complete Condensation of Forced Convection Two-Phase Flow in a Miniature Tube

Abstract
A physical and mathematical model of annular film condensation in a miniature tube has been developed. In the model the liquid flow has been coupled with the vapor flow along the liquid-vapor interface through the interfacial temperature, heat flux, shear stress, and pressure jump conditions due to surface tension effects. The model predicts the shape of the liquid-vapor interface along the condenser and the length of the two-phase flow region. The numerical results show that complete condensation of the incoming vapor is possible at comparatively low heat loads. Observations from a flow visualization experiment of water vapor condensing in a horizontal glass tube confirm the existence and qualitative features of annular film condensation leading to the complete condensation phenomenon in small diameter (d < 3.5 mm) circular tubes.