Dipolar and Nonpolar Altitudinal Molecular Rotors Mounted on an Au(111) Surface

Abstract
We describe the preparation of a compound whose molecules consist of two metal sandwich stands carrying tentacles with affinity to metal surfaces and holding an axle that carries a dipolar or a nonpolar rotator. The dipolar rotor exists as three pairs of enantiomers, rapidly interconverting at room temperature. When mounted on a gold surface, each molecule represents a chiral altitudinal rotor, with the rotator axle parallel to the surface. The surface-mounted rotor molecules are characterized by several spectroscopic and imaging techniques. At any one time, in about one-third of the dipolar rotors the rotator is free to turn and the direction of its dipole can be flipped by the electric field applied by an STM tip, as revealed by differential barrier height imaging. Molecular dynamics calculations suggest that electric field normal to the surface causes members of one pair of enantiomers to rotate unidirectionally.