The effects of systemic insulin, insulin-like growth factor-I and growth hormone on bone growth and turnover in spontaneously diabetic BB rats

Abstract
Spontaneously diabetic BB rats have a markedly depressed longitudinal bone growth and bone formation/turnover. In this study, male diabetic BB rats were infused intraperitoneally or subcutaneously for 2 weeks with hormones that are believed to stimulate skeletal growth and/or trabecular bone formation: insulin (3 or 4 U/day), human GH (hGH; 400 mU/day), recombinant human insulin-like growth factor-I (rhIGF-I; 300 or 600 μg/day) and testosterone (80 μg/100 g body weight per day). Saline-treated diabetic BB rats had decreased plasma concentrations of IGF-I and osteocalcin (OC) (OC, 3·7 ±0·3 vs 13·1 ± 0·8 (s.e.m.) nmol/l in controls); bone histomorphometry showed decreased epiphyseal width, osteoblast surface (0·04±0·04 vs 1·5±0·3%) and osteoid surface, and mineral apposition rate (MAR) (1·8±0·5 vs 7·9±0·6 μm/day). Testosterone and hGH infusions had no effect on weight loss or on decreased skeletal growth and bone formation of diabetic rats, nor did they increase plasma IGF-I concentrations. Insulin infusions into diabetic rats resulted in hyperinsulinaemia and accelerated weight gain. The epiphyseal width, osteoblast/osteoid surfaces and OC levels of insulin-treated rats were normalized or stimulated well above control values (osteoblast surface, 4·3 ±0·8%; plasma OC, 16·1 ± 1·4 nmol/l); the MAR (4·0 ± 0·9 μm/day) was only partly corrected after the 2-week infusion. Infusions of rhIGF-I into diabetic rats doubled but did not restore plasma IGF-I levels to normal; weight gain, however, was similar to that in control rats. IGF-I treatment had no effect on epiphyseal width, osteoblast/osteoid surfaces and OC concentrations, but improved the decreased MAR (4·6±1·2 μm/day). These results indicate (1) that the decreased epiphyseal width and osteoblast recruitment of diabetic BB rats are directly related to their insulin deficiency, and (2) that IGF-I, administered systemically, corrects, in part, the decreased MAR in diabetes, suggesting a role in osteoblast function and/or mineralization. Journal of Endocrinology (1992) 134, 485–492