Abstract
Summary A work-energy approach was used to determine the contributions of the muscles crossing the hip, knee and ankle joints to the total positive work done during maximal vertical jumps. It was found that the average relative contributions of the ankle and hip muscles were approximately 23 and 28% respectively, with the remaining 49% of the work being done by the muscles acting at the knee joint. The efficiency of jumping, i.e. the ratio of potential energy gained to the net mechanical work done by the muscles acting at the three lower limb joints was nearly 1.0. These results stress the importance of all three major leg extensor muscle groups to the performance of an explosive activity such as vertical jumping. It is suggested that the work-energy approach supplies useful information concerning joint contributions without the problems associated with other techniques.