Specific heat and quantized thermal conductance of single-walled boron nitride nanotubes

Abstract
The thermal properties of single-walled boron nitride nanotubes are calculated. It is found that boron nitride nanotubes have a larger specific heat than that of carbon nanotubes. The fitting formulas for diameter and chirality dependence of specific heat at 300 K are given. Moreover, thermal conductance of single-walled boron nitride nanotubes exhibits a universal quantization at low temperature, which is independent of the diameter and chirality of nanotubes.