Preliminary observations on escape swimming and giant neurons in Aglantha digitale (Hydromedusae: Trachylina)

Abstract
Aglantha can swim in two ways, one of which, fast swimming, is evoked by contact with predators and serves for escape. The response consists of two or three violent contractions of which the first propels the animal a distance equivalent to five body lengths. Peak velocities in the range 0.3–0.4 m s−1 were measured. Drag is reduced by contraction of the tentacles.Coordination of escape swimming and tentacle contraction is achieved by a system of giant axons. A giant axon runs down each tentacle; action potentials in these elements show a one-for-one correspondence with potentials recorded from a ring-shaped axon lying in the margin near the tentacle bases. The ring giant synapses with eight motor giants which run up the subumbrella innervating the swimming muscles.Conduction velocities in the giant axons may be as high as 4.0 m s−1 in the case of the largest (40 μm diameter) axons. A value of 1.6 ms was obtained for minimum synaptic delay between the ring and motor giant axons.

This publication has 1 reference indexed in Scilit: