Stimulation of Chitin Synthesis Rescues Candida albicans from Echinocandins

Top Cited Papers
Open Access
Abstract
Echinocandins are a new generation of novel antifungal agent that inhibit cell wall β(1,3)-glucan synthesis and are normally cidal for the human pathogen Candida albicans. Treatment of C. albicans with low levels of echinocandins stimulated chitin synthase (CHS) gene expression, increased Chs activity, elevated chitin content and reduced efficacy of these drugs. Elevation of chitin synthesis was mediated via the PKC, HOG, and Ca2+-calcineurin signalling pathways. Stimulation of Chs2p and Chs8p by activators of these pathways enabled cells to survive otherwise lethal concentrations of echinocandins, even in the absence of Chs3p and the normally essential Chs1p, which synthesize the chitinous septal ring and primary septum of the fungus. Under such conditions, a novel proximally offset septum was synthesized that restored the capacity for cell division, sustained the viability of the cell, and abrogated morphological and growth defects associated with echinocandin treatment and the chs mutations. These findings anticipate potential resistance mechanisms to echinocandins. However, echinocandins and chitin synthase inhibitors synergized strongly, highlighting the potential for combination therapies with greatly enhanced cidal activity. Fungal pathogens are increasingly important agents of human disease and are also difficult to treat since few antifungal agents kill the invading organism. The cell wall of a fungus is essential for its viability and this can be attacked by a new generation of antifungal antibiotics called echinocandins. Echinocandins such as caspofungin are normally cidal for the human pathogen Candida albicans. These inhibit the synthesis of β(1,3)-glucan, a major strength-imparting polysaccharide in the cell wall. Treatment of C. albicans with echinocandins in vitro stimulated the formation of a second cell wall polysaccharide—chitin, which rescued the cells. Treatments that increased the chitin content of the C. albicans cell wall reduced the efficacy of echinocandins and could even induce the formation of novel structures such as a salvage septum that enabled the cells to continue to undergo cell division under otherwise lethal conditions. Combined treatments with echinocandins and chitin synthase inhibitors synergized strongly, highlighting the potential for potent combination therapies with enhanced fungicidal activity.

This publication has 67 references indexed in Scilit: