Heparan sulfate (HS) proteoglycans play a key role in the self-assembly, insolubility and barrier properties of the extracellular matrix (ECM). Cleavage of HS therefore affects the integrity of tissues and hence normal and pathological phenomena involving cell migration and response to changes in the ECM. Mammalian heparanase, HS-degrading endoglycosidase,is synthesized as a latent 65 kDa precursor that undergoes proteolytic cleavage, yielding 8 kDa and 50 kDa subunits that heterodimerize to form a highly active enzyme. Heparanase is preferentially expressed in human tumors and its over-expression in tumor cells confers an invasive phenotype in experimental animals. Heparanase also releases angiogenic factors from the ECM and tumor micro environment and thereby induces an angiogenic response in vivo. Enhanced heparanase expression correlates with metastatic potential, tumor vascularity and reduced postoperative survival of cancer patients. Heparanase also promotes cell adhesion, survival and signaling events, independent of its enzymatic activity. These observations, the anti-cancerous effect of heparanase gene silencing and of heparanase inhibiting molecules as well as the unexpected identification of a predominant functional heparanase, suggest that the enzyme is a promising target for anti-cancer drug development. Here, we summarize recent progress in molecular and cellular aspects of heparanase, emphasizing its causal involvement in cancer metastasis and angiogenesis, and discuss the development of heparin-like heparanase inhibitors.