A Polymorphism in the CDKN1B Gene Is Associated with Increased Risk of Hereditary Prostate Cancer

Abstract
The loss of cell cycle control is believed to be an important mechanism in the promotion of carcinogenesis. CDKN1B (p27) belongs to the Cip/Kip family and functions as an important cell cycle gatekeeper. Several lines of evidence from clinical studies and laboratory experiments demonstrate that CDKN1B is an important tumor suppressor gene in prostate cancer etiology. In addition, a case-control study has shown that the 326T/G (V109G) polymorphism in CDKN1B is associated with advanced prostate cancer. In light of the evidence for linkage between the chromosomal location of the CDKN1B gene (12p13) and prostate cancer susceptibility in several hereditary prostate cancer (HPC) populations, we hypothesized that sequence variants of CDKN1B play a role in HPC. To test this hypothesis, we first resequenced this gene in 96 HPC probands to identify germ-line mutations and sequence variants. We then genotyped the identified sequence variants among all family members of 188 HPC families and tested for their cosegregation with prostate cancer. In total, 10 sequence variants were identified, including three nonsynonymous changes. A family-based test, which is free from the effects of population stratification, revealed a significant association between single nucleotide polymorphism (SNP) -79C/T and prostate cancer (with a nominal P of 0.0005). The C allele of -79C/T was overtransmitted from parents to their affected offspring. Evidence for this association was primarily contributed by affected offspring whose age at diagnosis was <65 years. Together with the previous association study in a sporadic prostate cancer population, our new findings additionally suggest that germ-line variants of this gene play a role in prostate cancer susceptibility.