RB silencing compromises the DNA damage-induced G2/M checkpoint and causes deregulated expression of the ECT2 oncogene

Abstract
As alterations in retinoblastoma (RB)/E2F pathway are commonly found in human cancers, the molecular mechanism underlying cell cycle deregulation caused by the mutations in the RB/E2F pathway needs to be investigated extensively. Compared with good understanding of RB/E2F functions in G1–S cell cycle progression, it is not fully understood how an abrogated RB pathway affects the G2–M phase of the cell cycle. Here, we report that disruption of RB accelerated G2–M progression in the presence of DNA damage by elevating the expression of a set of mitotic regulatory genes. We generated RB(+)- and (-)-matched cells using short hairpin RNA. In the RB(-) cells, the G2/M checkpoint mediated by a DNA-damaging agent was over-ridden. With microarray analysis, we found that the expression of key G2–M regulatory genes was upregulated in RB(-) cells. In particular, we demonstrated that the proto-oncogene ECT2 was directly regulated by E2Fs. Furthermore, suppression of ECT2 expression by small interfering RNA in RB(-) cells resulted in cytokinesis arrest, suggesting that RB(-) cells lack the regulation of E2F-mediated cytokinesis. These results indicate that aberrant ECT2 expression, observed in various human tumors, could be the direct result of RB/E2F pathway deficiency, thereby contributing to cell division in cancers.