A Three-Dimensional Simulation of Age-Related Remodeling in Trabecular Bone
- 1 April 2001
- journal article
- Published by Oxford University Press (OUP) in Journal of Bone and Mineral Research
- Vol. 16 (4), 688-696
- https://doi.org/10.1359/jbmr.2001.16.4.688
Abstract
After peak bone mass has been reached, the bone remodeling process results in a decrease in bone mass and strength. The formation deficit, the deficit of bone formation compared with previous resorption, results in bone loss. Moreover, trabeculae disconnected by resorption cavities probably are not repaired. The contributions of these mechanisms to the total bone loss are unclear. To investigate these contributions and the concomitant changes in trabecular architecture and mechanical properties, we made a computer simulation model of bone remodeling using microcomputed tomography (micro-CT) scans of human vertebral trabecular bone specimens. Up to 50 years of physiological remodeling were simulated. Resorption cavities were created and refilled 3 months later. These cavities were not refilled completely, to simulate the formation deficit. Disconnected trabeculae were not repaired; loose fragments generated during the simulation were removed. Resorption depth, formation deficit, and remodeling space were based on biological data. The rate of bone loss varied between 0.3% and 1.1% per year. Stiffness anisotropy increased, and morphological anisotropy (mean intercept length [MIL]) was almost unaffected. Connectivity density increased or decreased, depending on the remodeling parameters. The formation deficit accounted for 69-95%, disconnected trabeculae for 1-21%, and loose fragments for 1-17% of the bone loss. Increasing formation deficit from 1.8% to 5.4% tripled bone loss but only doubled the decrease in stiffness. Increasing resorption depth from 28 to 56 microm slightly increased bone loss but drastically decreased stiffness. Decreasing the formation deficit helps to prevent bone loss, but reducing resorption depth is more effective in preventing loss of mechanical stiffness.Keywords
This publication has 36 references indexed in Scilit:
- The Relationship Between Three-Dimensional Connectivity and the Elastic Properties of Trabecular BoneJournal of Bone and Mineral Research, 1998
- Perspective on the Impact of Weightlessness on Calcium and Bone MetabolismBone, 1998
- Dynamic Stochastic Simulation of Cancellous Bone ResorptionBone, 1998
- A new method for the model‐independent assessment of thickness in three‐dimensional imagesJournal of Microscopy, 1997
- Quantification of Bone Microarchitecture with the Structure Model IndexComputer Methods in Biomechanics and Biomedical Engineering, 1997
- A physiological approach to the simulation of bone remodeling as a self-organizational control processJournal of Biomechanics, 1994
- Increased intracortical remodeling following fatigue damageBone, 1993
- Remodeling and the repair of fatigue damageCalcified Tissue International, 1993
- Consequences of the remodelling process for vertebral trabecular bone structure: a scanning electron microscopy study (uncoupling of unloaded structures)Bone and Mineral, 1990
- Reconstruction of the resorptive site in iliac trabecular bone: A kinetic model for bone resorption in 20 normal individualsMetabolic Bone Disease and Related Research, 1984