Raster image correlation spectroscopy (RICS) for measuring fast protein dynamics and concentrations with a commercial laser scanning confocal microscope
Top Cited Papers
Open Access
- 17 December 2007
- journal article
- Published by Wiley in Journal of Microscopy
- Vol. 229 (1), 78-91
- https://doi.org/10.1111/j.1365-2818.2007.01871.x
Abstract
Raster image correlation spectroscopy (RICS) is a new and novel technique for measuring molecular dynamics and concentrations from fluorescence confocal images. The RICS technique extracts information about molecular dynamics and concentrations from images of living cells taken on commercial confocal systems. Here we develop guidelines for performing the RICS analysis on an analogue commercial laser scanning confocal microscope. Guidelines for typical instrument settings, image acquisition settings and analogue detector characterization are presented. Using appropriate instrument/acquisition parameters, diffusion coefficients and concentrations can be determined, even for highly dynamic dye molecules in solution. Standard curves presented herein demonstrate the ability to detect protein concentrations as low as ∼ 2 nM. Additionally, cellular measurements give accurate values for the diffusion of paxillin-enhanced-green fluorescent protein (EGFP), an adhesion adaptor molecule, in the cytosol of the cell and also show slower paxillin dynamics near adhesions where paxillin interacts with immobile adhesion components. Methods are presented to account for bright immobile structures within the cell that dominate spatial correlation functions; allowing the extraction of fast protein dynamics within and near these structures. A running average algorithm is also presented to address slow cellular movement or movement of cellular features such as adhesions. Finally, methods to determine protein concentration in the presence of immobile structures within the cell are presented. A table is presented giving guidelines for instrument and imaging setting when performing RICS on the Olympus FV300 confocal and these guidelines are a starting point for performing the analysis on other commercial confocal systems.Keywords
This publication has 14 references indexed in Scilit:
- Paxillin Dynamics Measured during Adhesion Assembly and Disassembly by Correlation SpectroscopyBiophysical Journal, 2008
- Spatiotemporal Image Correlation Spectroscopy (STICS) Theory, Verification, and Application to Protein Velocity Mapping in Living CHO CellsBiophysical Journal, 2005
- Dynamics of β2-Adrenergic Receptor−Ligand Complexes on Living CellsBiochemistry, 2004
- FAK–Src signalling through paxillin, ERK and MLCK regulates adhesion disassemblyNature Cell Biology, 2004
- Cellular Characterization of Adenylate Kinase and Its Isoform:Two-Photon Excitation Fluorescence Imaging and Fluorescence Correlation SpectroscopyBiophysical Journal, 2002
- Partitioning of Lipid-Modified Monomeric GFPs into Membrane Microdomains of Live CellsScience, 2002
- Differential Dynamics of α5 Integrin, Paxillin, and α-Actinin during Formation and Disassembly of Adhesions in Migrating CellsThe Journal of cell biology, 2001
- Two‐photon image correlation spectroscopy and image cross‐correlation spectroscopyJournal of Microscopy, 2000
- Molecular mobility on the cell surface.1981
- Fluorescence correlation spectroscopy. II. An experimental realizationBiopolymers, 1974