Abstract
The effect of the growth retardants on the structure of Pea seedlings coltured in nutritive solution. – The addition of CCC (2-Chloro-ethyltrimethyl ammonium chloride) and AMO 1618 (4-Hydroxyl-5-isopropyl-2 methyl-phenyl-trimethylammonium chloride. 1-piperidine carboxylate) to Pea seedlings (Pisum sativum L. var. Gloria di Quimper) promotes the usual modifications induced by growth retardants on higher plants. CCC appears less effective than AMO 1618; CCC inhibits growth only at 102-M. concentration, on the contrary 5×10-5M. AMO 1618 inhibits strongly the growth of the seedlings both in the light and in darkness. CCC and AMO 1618 operate similarly as far as the inhibition of expansion growth, the increase of the stem diameter, and the decrease of the apical dominance are concerned. 10-2M. CCC stimulates both the growth of roots and the secondary roots formation, on the contrary 2,5×10-4M. AMO 1618 inhibits strongly the growth of the roots. AMO 1618 affects more strongly than CCC the expantion growth of the leaves. Leaves of the AMO 1618 treated plants are greener than the control plants. Plants treated with CCC and AMO 1618 are smaller because these chemicals inhibit the expantion growth of the cells. The increase of the stem diameter induced by CCC and AMO 1618 is due to the stimulation of the mitotic activity of the cambium. AMO and CCC induce a decrease of the size of the vessels and the sieve tubes. In the sieve tubes of the treated plants and slime plugs appear near to the sieve plates many slime bodies. AMO and CCC did not affect the mitotic activity of the apical meristems; in fact the plants grown in the presence of the growth retardants, show a normal primary body. AMO and CCC delay the lignification process. Chloroplasts of this Pisum sativum variety show prolamellary bodies associated to a good lamellar system. Starch granules are always present. Starch was never found in the chloroplasts of the treated plants. The general picture of the effects induced by growth retardants in Pea seedlings show so many modifications that it is very difficult to believe, like some Authors suggest, that all the effects produced by growth retardants are due to the inhibition of gibberellin biosynthesis.