The mechanisms by which nitric oxide modulates microvascular albumin exchange were investigated by monitoring leukocyte-endothelial cell adhesion and fluorescein isothiocyanate-albumin leakage in rat mesenteric venules exposed to NG-nitro-L-arginine methyl ester (L-NAME). L-NAME elicited an initial rapid increase followed by a slower rate of albumin accumulation in the interstitial space. The initial phase of albumin leakage preceded the L-NAME-induced leukocyte adherence and emigration, whereas the magnitude of the albumin leakage observed in the later phase of L-NAME exposure was highly correlated with the number of adherent and emigrated leukocytes in the same segment of venule. Monoclonal antibodies (MAbs) directed against adhesion molecules CD11/CD18, ICAM-1, or P-selectin, but not a nonbinding MAb, attenuated the albumin leakage induced by L-NAME. WEB2086, a platelet activating factor antagonist, and 8-bromoguanosine 3',5'-cyclic monophosphate (8-br-cGMP) reduced the leukocyte adherence and emigration as well as the increased albumin leakage. Only 8-br-cGMP and the P-selectin MAb attenuated the platelet-leukocyte aggregation elicited by L-NAME. Phalloidin, which promotes endothelial junctional integrity, inhibited both the early and late phases of albumin leakage. Overall, these findings suggest that the increased albumin leakage observed in postcapillary venules after inhibition of nitric oxide production involves a mechanism that includes a role for cGMP, platelet activating factor, leukocyte-endothelial cell adhesion, and the endothelial cell cytoskeleton.