The formation of glycosidic bonds in yeast glycoproteins

Abstract
Membranes of Saccharomyces cerevisiae were separated on urografin gradients. The specific activity of the light membranes (endoplasmic reticulum), the Golgi-like vesicles and the plasma membrane in transferring mannosyl residues from GDP-mannose to mannoproteins and to dolichyl monophosphate has been determined. The first mannose of the O-glycosidically linked manno-oligosaccharides is incorporated with the highest specific activity by the endoplasmic reticulum. The incorporation of the second to fourth mannosyl groups is catalysed with increasing activity also by the Golgi-like vesicles and the plasma membrane. The incorporation of mannosyl groups into weak alkali-stable positions (N-glycosidically linked chains) is carried out with almost the same specific activity by all three membrane fractions, however, dolicholdependent and-independent steps could not be distinguished as yet. The results are discussed in terms of a sequential addition of sugar residues along the route of export of the mannoproteins. The dolichol-dependent steps seem to occur on the endoplasmic reticulum and thus very carly in the event.