Blood Pressure Lowering for the Prevention and Treatment of Diabetic Kidney Disease

Abstract
The current pandemic of diabetes mellitus will inevitably be followed by an epidemic of chronic kidney disease. It is anticipated that 25–40% of patients with type 1 diabetes and 5–40% of patients with type 2 diabetes will ultimately develop diabetic kidney disease. The control of blood pressure represents a key component for the prevention and management of diabetic nephropathy. There is a strong epidemiological connection between hypertension in diabetes and adverse outcomes in diabetes. Hypertension is closely linked to insulin resistance as part of the ‘metabolic syndrome’. Diabetic nephropathy may lead to hypertension through direct actions on renal sodium handling, vascular compliance and vasomotor function. Recent clinical trials also support the utility of blood pressure reduction in the prevention of diabetic kidney disease. In patients with normoalbuminuria, transition to microalbuminuria can be prevented by blood pressure reduction. This action appears to be significant regardless of whether patients have elevated blood pressure or not. The efficacy of ACE inhibition appears to be greater than that achieved by other agents with a similar degree of blood pressure reduction; although large observational studies suggest the risk of microalbuminuria may be reduced by blood pressure reduction, regardless of modality. In patients with established microalbuminuria, ACE inhibitors and angiotensin receptor antagonists (angiotensin receptor blockers [ARBs]) consistently reduce the risk of progression from microalbuminuria to macroalbuminuria, over and above their antihypertensive actions. The clinical utility of combining these strategies remains to be established. In patients with overt nephropathy, blood pressure reduction is associated with reduced urinary albumin excretion and, subsequently, a reduced risk of renal impairment or end stage renal disease. In addition to actions on systemic blood pressure, it is now clear that ACE inhibitors and ARBs also reduce proteinuria in patients with diabetes. This anti-proteinuric activity is distinct from other antihypertensive agents and diuretics. Although there is a clear physiological rationale for blockade of the renin angiotensin system, which is strongly supported by clinical studies, to achieve the optimal lowering of blood pressure, particularly in the setting of established diabetic renal disease, a number of different antihypertensive agents will always be needed. In the end, the choice of agents should be individualised to achieve the maximal tolerated reduction in blood pressure and albuminuria. Ultimately, no matter how it is achieved, so long as it is achieved, renal risk can be reduced by agents that lower blood pressure and albuminuria.