Abstract
Attenuated total reflection infrared spectroscopy has been used to determine the equilibrium distribution of the peptide antibiotic alamethicinR F30 between dipalmitoyl phosphatidylcholine bilayers and the aqueous environment. The distribution coefficientK=c eq W /c eq M turned out to be concentration dependent, pointing to alamethicin association in the membrane with increasing concentration in the aqueous phase (c eq W ). This concentration was varied within 28 and 310nm, i.e., in a range typical for black film experiments. Furthermore, diffusion coefficients of alamethicin in the hydrophobic phase of the membrane (D M) and across the membrane/water interface (D I) have been estimated from the time course of the equilibration process. It was found that the diffusion rate of the uncharged analogueR F50 is about 10 times higher than that of theR F30 component, exhibiting one negative charge at theC-terminus. The time constants for transmembrane diffusion of alamethicinR F30 varied between 2.2 hr at low concentration and 3.2 hr at higher concentration. The corresponding low concentration value of theR F50 component was found to be 0.25 hr.

This publication has 11 references indexed in Scilit: