Emission of ent-Kaurene, a Diterpenoid Hydrocarbon Precursor for Gibberellins, into the Headspace from Plants

Abstract
ent-Kaurene is a tetracyclic hydrocarbon precursor for gibberellins (GAs) in plants and fungi. To address whether fungal GA biosynthesis enzymes function in plants, we generated transgenic Arabidopsis plants overexpressing ent-kaurene synthase (GfCPS/KS) from a GA-producing fungus Gibberella fujikuroi. GfCPS/KS catalyzes a two-step reaction corresponding to ent-copalyl diphosphate synthase (CPS) and ent-kaurene synthase (KS) activities in plants. When GfCPS/KS was overexpressed and targeted to plastids, a range of GA-deficient phenotypes of the ga1-3 and ga2-1 mutants (defective in CPS and KS, respectively) were restored to wild type. Unexpectedly, the transgenic lines overproducing GfCPS/KS emitted the GA precursor ent-kaurene into the headspace besides its accumulation in the plant body. When co-cultivated with the ent-kaurene overproducers in a closed environment, the airborne ent-kaurene was able to fully complement the dwarf phenotype of ga1-3 and ga2-1 mutants, but not that of the ga3-1 mutant (defective in ent-kaurene oxidase). These results suggest that ent-kaurene may be efficiently metabolized into bioactive GAs in Arabidopsis when supplied as a volatile. We also provide evidence that ent-kaurene is released in the headspace of wild-type Chamaecyparis obtusa and Cryptomeria japonica plants, suggesting the occurrence of this hydrocarbon GA precursor as a volatile in nature.