Interface reactions between machinable bioactive glass‐ceramics and bone

Abstract
A new biomaterial for bone substitution, a “machinable bioactive glass‐ceramic” has been developed. The material contains two main crystal phases, mica and apatite, and is therefore machinable and bioactive. It has the advantage to be workable by the surgeon, if necessary, during operation. The preparation method of this glass‐ceramic is described. Different types of the material can be produced in dependence of the composition, nucleation, and crystallization of the basic glass. In vivo and in vitro investigations showed a characteristic solubility of the material. A Caphosphate‐rich interface layer with apatite crystals (from the basic glass‐ceramic) and a thickness of about 5–10 μm grows as solid‐state reaction between glass‐ceramic and bone. This interface reaction is interpreted as a chemical process which includes a slight solubility of the glass‐ceramic and a solid state reaction between the stable apatite crystals in the glass‐ceramic and the bone.

This publication has 12 references indexed in Scilit: