Coordination Properties of New Bis(1,4,7-triazacyclononane) Ligands: A Highly Active Dizinc Complex in Phosphate Diester Hydrolysis
- 23 September 2003
- journal article
- Published by American Chemical Society (ACS) in Inorganic Chemistry
- Vol. 42 (21), 6929-6939
- https://doi.org/10.1021/ic034050r
Abstract
The synthesis and characterization of three new bis([9]aneN3) ligands, containing respectively 2,2‘-bipyridine (L1), 1,10-phenanthroline (L2), and quinoxaline (L3) moieties linking the two macrocyclic units, are reported. Proton binding and Cu(II), Zn(II), Cd(II), and Pb(II) coordination with L1−L3 have been studied by potentiometric titrations and, for L1 and L2, by spectrophotometric UV−vis measurements in aqueous solutions. All ligands can give stable mono- and dinuclear complexes. In the case of L1, trinuclear Cu(II) complexes are also formed. The stability constants and structural features of the formed complexes are strongly affected by the different architecture and binding properties of the spacers bridging the two [9]aneN3 units. In the case of the L1 and L2 mononuclear complexes, the metal is coordinated by the three donors of one [9]aneN3 moiety; in the [ML2]2+ complexes, however, the phenanthroline nitrogens are also involved in metal binding. Finally, in the [ML3]2+ complexes both macrocyclic units, at a short distance from each other, can be involved in metal coordination, giving rise to sandwich complexes. In the binuclear complexes each metal ion is generally coordinated by one [9]aneN3 unit. In L1, however, the dipyridine nitrogens can also act as a potential binding site for metals. The dinuclear complexes show a marked tendency to form mono-, di-, and, in some cases, trihydroxo species in aqueous solutions. The resulting M−OH functions may behave as nucleophiles in hydrolytic reactions. The hydrolysis rate of bis(p-nitrophenyl)phosphate (BNPP) was measured in aqueous solution at 308.1 K in the presence of the L2 and L3 dinuclear Zn(II) complexes. Both the L2 complexes [Zn2L2(OH)2]2+ and [Zn2L2(OH)3]+ and the L3 complex [Zn2L3(OH)3]+ promote BNPP hydrolysis. The [Zn2L3(OH)3]+ complex is ca. 2 orders of magnitude more active than the L2 complexes, due both to the short distance between the metal centers in [Zn2L3(OH)3]+, which could allow a bridging interaction of the phosphate ester, and to the simultaneous presence of single-metal bound nucleophilic Zn−OH functions. These structural features are substantially corroborated by semiempirical PM3 calculations carried out on the mono-, di-, and trihydroxo species of the L3 dizinc complex.Keywords
This publication has 60 references indexed in Scilit:
- Transitions, Transition States, Transition State Analogues: Zinc Pyrazolylborate Chemistry Related to Zinc EnzymesAccounts of Chemical Research, 1999
- Binucleating Ligand Structural Effects on (μ-Peroxo)- and Bis(μ-oxo)dicopper Complex Formation and Decay: Competition between Arene Hydroxylation and Aliphatic C−H Bond ActivationInorganic Chemistry, 1997
- Making and Breaking the Dioxygen O−O Bond: New Insights from Studies of Synthetic Copper ComplexesAccounts of Chemical Research, 1997
- Carboxy and Phosphate Esters Cleavage with Mono- and Dinuclear Zinc(II) Macrocyclic Complexes in Aqueous Solution. Crystal Structure of [Zn2L1(μ-PP)2(MeOH)2](ClO4)2 (L1 = [30]aneN6O4, PP- = Diphenyl Phosphate)Inorganic Chemistry, 1997
- Bis(ZnII–cyclen) Complex as a Novel Receptor of Barbiturates in Aqueous SolutionChemistry – A European Journal, 1996
- Binuclear Copper(II) Complexes of Bis(pentadentate) Ligands Derived from Alkyl-Bridged Bis(1,4,7-triazacyclonane) MacrocyclesInorganic Chemistry, 1996
- Structure determination and refinement of bovine lens leucine aminopeptidase and its complex with bestatinJournal of Molecular Biology, 1992
- Anisotropic mixed-valence systems. Dimers of the delocalized clusters [Ru3O(CH3CO2)6(L)3]n+Inorganic Chemistry, 1979
- Polarographic behaviour of K2Fe(CN)4(bipy)2 3H2O and COIII(NH3)5CNFeII(CN)5 complexes at D.M.E.Journal of Inorganic and Nuclear Chemistry, 1972
- Mixed ligand chelates of copper(II)Journal of Inorganic and Nuclear Chemistry, 1969