Further results for Gauss-Poisson processes

Abstract
Newman (1970) introduced an interesting new class of point processes which he called Gauss-Poisson. They are characterized, in the most general case, by two measures. We determine necessary and sufficient conditions on these measures for the resulting point process to be well defined, and proceed to a systematic study of its properties. These include stationarity, ergodicity, and infinite divisibility. We mention connections with other classes of point processes and some statistical results. Our basic approach is through the probability generating functional of the process.

This publication has 29 references indexed in Scilit: