CD4pos, NK1.1pos T cells promptly produce interleukin 4 in response to in vivo challenge with anti-CD3.
Open Access
- 1 April 1994
- journal article
- Published by Rockefeller University Press in The Journal of Experimental Medicine
- Vol. 179 (4), 1285-1295
- https://doi.org/10.1084/jem.179.4.1285
Abstract
Injection of anti-CD3 antibodies causes prompt expression of interleukin (IL)-4, IL-2, and interferon gamma (IFN-gamma) mRNA among spleen cells. The optimal dose of anti-CD3 for such induction was 1.33 microgram/animal; lymphokine mRNA was first observed at 30 min, peaked at 90 min, and was undetectable (for IL-4) or had declined markedly by 4 h. Cells harvested from spleens of mice injected with anti-CD3 90 min earlier secreted IL-4, IL-2, and IFN-gamma without further stimulation. By contrast, in vitro stimulation with anti-CD3 of spleen cell suspensions or splenic fragments from noninjected donors failed to cause prompt production of IL-4 and, even after 24 h of stimulation, the amount of IL-4 produced in such cells was substantially less than that secreted within 1 h by spleen cell suspensions or splenic fragments from mice injected with anti-CD3 90 min earlier. Production of IL-4 by spleen cells from anti-CD3-injected mice was not inhibited by pretreatment with anti-IL-4 antibody or with IFN-gamma or tumor growth factor beta nor enhanced by treatment with IL-4. By contrast, CTLA-4 immunoglobulin (Ig) treatment clearly diminished IL-4 production in response to in vivo anti-CD3, indicating that cellular interactions involving CD28 (or related molecules) were important in stimulation. Cell sorting analysis indicated that the cells that produced IL-4 in response to in vivo injection of anti-CD3 were highly enriched in CD4pos cells with the phenotype leukocyte cell adhesion molecule-1 (LECAM-1)dull, CD44bright, CD45RBdull, NK1.1pos. Indeed, the small population of CD4pos, NK1.1pos cells had the great majority of the IL-4-producing activity of this population. Injection with Staphylococcal enterotoxin B also caused prompt induction of IL-4 mRNA; the cells that were principally responsible for production also had the phenotype of CD4pos, NK1.1pos. These results suggest that possibility that this rare population of T cells may be capable of secreting IL-4 at the outset of immune responses and thus may act to regulate the pattern of priming of naive T cells, by providing a source of IL-4 to favor the development of T cell helper 2-like IL-4-producing cells.Keywords
This publication has 49 references indexed in Scilit:
- T-cell memory: new perspectivesImmunology Today, 1993
- Disruption of the murine IL-4 gene blocks Th2 cytokine responsesNature, 1993
- Regulation of Immunity to Parasites by T Cells and T Cell-Derived CytokinesAnnual Review of Immunology, 1992
- Interleukin 4 induces synthesis of IgE and IgG4 in human B cellsEuropean Journal of Immunology, 1989
- TH1 and TH2 Cells: Different Patterns of Lymphokine Secretion Lead to Different Functional PropertiesAnnual Review of Immunology, 1989
- Specific assays for cytokine production by T cellsJournal of Immunological Methods, 1989
- A functional dichotomy in CD4+ T lymphocytesImmunology Today, 1988
- Serological, biochemical, and functional identity of B cell-stimulatory factor 1 and B cell differentiation factor for IgG1.The Journal of Experimental Medicine, 1985
- Production of a monoclonal antibody to and molecular characterization of B-cell stimulatory factor-1Nature, 1985
- Characterization of a monoclonal antibody directed against mouse macrophage and lymphocyte Fc receptors.The Journal of Experimental Medicine, 1979