Ab initiocalculation of force constants for the linear molecules HCN, FCN, (CN)2and the ion N2F+

Abstract
Force constants have been calculated from ab initio Hartree-Fock wave-functions by the force method, using 7s3p/1 and 5s2p/1 gaussian basis sets for HCN, FCN, C2N2 and FN2 +. Agreement of the quadratic and some cubic force constants with experiment is good for HCN and FCN. The influence of anharmonicity upon the l-type doubling constant of FCN is estimated. Both the experimental l-type doubling constant and the ab initio calculations indicate that the quadratic stretch, stretch coupling constant is positive in FCN, contrary to recent results of Wang and Overend, obtained from the Anderson potential function. There is good agreement for the CN, C′N′ coupling in C2N2 but the calculated CN, CC coupling, although positive, is much lower than in two recent experimental force fields. The calculated FN, NN coupling in FN2 + is small and positive. The predicted geometry of FN2 + is r NF = 1·28 Å, r NN = 1·105 Å. The validity of the Anderson potential function is discussed.

This publication has 23 references indexed in Scilit: