Impaired long-term potentiation in vivo in the dentate gyrus of pituitary adenylate cyclase-activating polypeptide (PACAP) or PACAP type 1 receptor-mutant mice

Abstract
The present study was conducted to clarify a role of pituitary adenylate cyclase-activating polypeptide (PACAP) and PACAP type 1 receptor (PAC1R) in learning and memory function. We demonstrated long-term potentiation (LTP) in vivo in the dentate gyrus of PAC1R exon 2-deficient (PAC1R-/-) mice and heterozygous PACAP-deficient (PACAP+/-) mice using extracellular recording techniques. We used two paradigms of tetanic stimulation, suprathreshold and at threshold tetanus, which both induced LTP in vivo in PAC1R-/- and PACAP+/- mice. However, the population spike of 'at threshold' but not 'suprathreshold' LTP decreased significantly in PAC1R-/- and PACAP+/- mice. At threshold LTP of PACAP+/- mice was impaired greater than the one of PAC1R-/- mice. Thus, both PACAP and PAC1R could contribute to the establishment of LTP in a gene dosage-dependent manner, although PACAP rather than PAC1R might play a pivotal role in learning and memory function.

This publication has 22 references indexed in Scilit: