Abstract
It has been recognized for several years that ozone in rural areas can exceed the National Ambient Air Quality Standard (NAAQS) for photochemical oxidant whirh was 0.08 ppm for one hour, not to be exceeded more than once per year. During the summer of 1973, the NAAQS was exceeded from 15 to 37% of the time at four rural monitoring sites in Maryland, Pennsylvania, Ohio, and West Virginia.1 This is a greater violation rate than is found in many urban areas. Dimitriades and Altshuller2 have enumerated four possible sources for this rural ozone: (a) transport from urban areas, (b) local photochemical generation from urban ozone precursors, (c) local photochemical generation from precursors of rural origin which may be man-made or natural, and (d) injection of stratospheric ozone into the rural area. This paper considers the chemistry pertinent to the first two of these possible sources of rural ozone, namely the long distance (overnight) transport of ozone and ozone precursors.