Body mass index: a measure of fatness or leanness?

Abstract
The relationship between body fat and stature-adjusted weight indices was explored. Assuming the term height2 is a valid indicator of a subject's lean body mass, height2/weight was shown to be an accurate measure of percentage lean body mass and, as such, a better predictor of percentage body fat than the traditional body mass index (BMI; weight/height2). The name, lean body mass index (LBMI), is proposed for the index height2/weight. These assumptions were confirmed empirically using the results from the Allied Dunbar National Fitness Survey (ADNFS). Using simple allometric modelling, the term heightp explained 74% of the variance in lean body mass compared with less than 40% in body weight. For the majority of ADNFS subjects the fitted exponent from both analyses was approximately p = 2, the only exception being the female subjects aged 55 years and over, where the exponent was found to be significantly less than 2. Using estimates of percentage body fat as the dependent variable, regression analysis was able to confirm that LBMI was empirically, as well as theoretically, superior to the traditional BMI. Finally, when the distributional properties of the two indices were compared, BMI was positively skewed and hence deviated considerably from a normal distribution. In contrast, LBMI was found to be both symmetric and normally distributed. When height and weight are recorded in centimetres and kilograms respectively, the suggested working normal range for LBMI is 300–500 with the median at 400.