Reduced Intranuclear Mobility of APL Fusion Proteins Accompanies Their Mislocalization and Results in Sequestration and Decreased Mobility of Retinoid X Receptor α

Abstract
Acute promyelocytic leukemia (APL) cells contain one of five chimeric retinoic acid α-receptor (RARα) genes (X-RARα) created by chromosomal translocations or deletion; each generates a fusion protein thought to transcriptionally repress RARα target genes and block myeloid differentiation by an incompletely understood mechanism. To gain spatiotemporal insight into these oncogenic processes, we employed fluorescence microscopy and fluorescence recovery after photobleaching (FRAP). Fluorescence microscopy demonstrated that the intracellular localization of each of the X-RARα proteins was distinct from that of RARα and established which portion(s) of each X-RARα protein—X, RAR, or both—contributed to its altered localization. Using FRAP, we demonstrated that the intranuclear mobility of each X-RARα was reduced compared to that of RARα. In addition, the mobility of each X-RARα was reduced further by ligand addition, in contrast to RARα, which showed no change in mobility when ligand was added. Both the reduced baseline mobility of X-RARα and the ligand-induced slowing of X-RARα could be attributed to the protein interaction domain contained within X. RXRα aberrantly colocalized within each X-RARα; colocalization of RXRα with promyelocytic leukemia (PML)-RARα resulted in reduced mobility of RXRα. Thus, X-RARα may interfere with RARα through its aberrant nuclear dynamics, resulting in spatial and temporal sequestration of RXRα and perhaps other nuclear receptor coregulators critical for myeloid differentiation.