Convection experiments with electrolytically heated fluid layers

Abstract
Convection experiments described by Tritton & Zarraga (1967) with electrolytically heated fluid layers were renewed in order to investigate the reported phenomena, which were hitherto unknown and which contradicted a corresponding theory of Roberts. While the apparatus was essentially unchanged, provisions were incorporated to study the possible influence of several flow and equipment parameters on the convection pattern. With the exception of the temperature dependence of the electric conductivity, the new experiments displayed no essential effects of the convection parameters. Experiments with shallow fluid layers revealed a clear co-orientation of the convection flows with the electric current and a strong time dependence of the hexagonal patterns. Experiments with deeper fluid layers exhibited a considerably diminished time and direction dependence of the convection flow, and a significant reduction of the dilation of the cells. Based on these observations, it is concluded that no drastic differences between theory and experiments, and between internal and external heating, exist, provided the heating is sufficiently uniform.