Optimal control of uncertain quantum systems

Abstract
The design of optimal final-state controllers of quantum-mechanical systems that are insensitive to errors in the molecular Hamiltonian or to errors in the initial state of the system is considered. Control arises through the interaction of the system with an external field; the goal is optimal design of these latter fields for various physical objectives in the presence of system uncertainty. Sensitivity to modeling errors and other uncertainties in the molecular Hamiltonian is minimized by considering averaged costs for a family of Hamiltonian functions H0(α) indexed by the random variable α taking values on a compact set in Euclidean space. Similarly, sensitivity of the optimal control to the initial state is minimized by viewing the initial condition as a Hilbert-space-valued random variable and considering an optimization problem with a cost functional that is averaged over the class of initial conditions. A precise formulation of the control problem is given, and its well-posedness is established. Cost propagators are defined to display the dependence of the performance index on the initial conditions explicitly, which allows analytic averaging of initial conditions.