Frequency Domain Analysis of Cerebral Blood Flow Velocity and its Correlation with Arterial Blood Pressure

Abstract
We applied frequency domain analysis to detect and quantify spontaneous fluctuations in the blood flow velocity of the middle cerebral artery (MCAFV). Instantaneous MCAFV of normal volunteers was detected using transcranial Doppler sonography. Spectral and transfer function analyses of MCAFV and arterial blood pressure (ABP) were performed by fast Fourier transform. We found the fluctuations in MCAFV, like ABP, could be diffracted into three components at specific frequency ranges, designated as high-frequency (HF, 0.15 to 0.4 Hz), low-frequency (LF, 0.04 to 0.15 Hz), and very low-frequency (VLF, 0.016 to 0.04 Hz) components. The HF and LF components of MCAFV exhibited high coherence with those of ABP, indicating great similarity of MCAFV and ABP fluctuations within the two frequency ranges. However, it was not the case for the VLF component. Transfer function analysis revealed that the ABP-MCAFV phase angle was frequency-dependent in the LF range ( r = −0.79, P < 0.001) but not in the HF range. The time delay between LF fluctuations of ABP and those of MCAFV was evaluated as 2.1 seconds. We conclude that in addition to traditional B-wave equivalents, there are at least two different mechanisms for MCAFV fluctuations: the HF and LF fluctuations of MCAFV are basically secondary to those of ABP, and cerebral autoregulation may operate efficiently in LF rather than HF range. Frequency domain analysis offers an opportunity to explore the nature and underlying mechanism of dynamic regulation in cerebral circulation.