Bradykinin Regulates Cyclooxygenase-2 in Rat Renal Thick Ascending Limb Cells

Abstract
Cyclooxygenase-2 (COX-2) is constitutively expressed in a subset of thick ascending limb cells in the cortex and medulla and increases when the renin-angiotensin and kallikrein-kinin systems are activated. Although the contribution of angiotensin II to the regulation of COX-2 is known, the effects of bradykinin on COX-2 expression have not been determined in this nephron segment. We evaluated expression of B2 bradykinin receptors in thick ascending limb cells containing COX-2 and the effect of bradykinin on COX-2 expression in primary cultured medullary thick ascending cells. The presence of B2 receptors was studied in renal sections by immunohistochemistry with antibodies against B2, COX-2, and Tamm-Horsfall glycoprotein. B2 receptors were detected on the apical and basolateral portion of the thick ascending cells. These cells also contained COX-2, suggesting that COX-2 expression may be regulated via B2 receptor. Incubation of cultured medullary thick ascending cells with bradykinin (10 −7 to 10 −5 mol/L) induced a significant increase on COX-2 protein expression. Maximal expression of COX-2 was observed 4 hours after exposure to bradykinin (10 −7 mol/L), effect abolished by a B2 receptor antagonist (HOE-140; 10 −6 mol/L). Prostaglandin E 2 production increased when these cells were challenged with bradykinin for 4 hours, indicating that COX-2 was enzymatically active. We have demonstrated (1) the presence of B2 receptors in thick ascending limb cells expressing COX-2 and (2) the stimulatory effect of bradykinin on COX-2 protein expression, via B2 receptors, in cultured medullary thick ascending cells. We suggest that bradykinin can affect ion transport in the thick ascending limb via a COX-2–mediated mechanism.