Identification and characterization of a siderophore regulatory gene (pfrA) of Pseudomonas putida WCS358: homology to the alginate regulatory gene aigQ of Pseudomonas aeruginosa

Abstract
Genes encoding biosynthesis of pseudobactin 358 (a microbial iron transport agent) and its cognate outer membrane receptor protein, PupA, are transcribed only under iron limitation in plant growth-promoting Pseudomonas putida WCS358. Two cosmid clones were identified from a gene bank of WCS358 DNA which could independently and in an iron-dependent manner activate transcription from a WCS358 siderophore gene promoter in heterologous Pseudomonas strain A225. The functional region of one of the clones was localized by subcloning, transposon Tn3Gus mutagenesis, and DNA sequencing. Genomic transposon insertion mutants in the functional region lost the capacity to activate a siderophore gene promoter fusion transcriptionally; furthermore, these mutants no longer produced pseudobactin 358. The activating region consisted of a single gene designated pfrA (Pseudomonas ferric regulator). The pfrA gene codes for a single polypeptide, PfrA, of approximately 18 kDa, which has 58% identity to AlgQ (also known as AlgR2), a positive regulator involved in transcriptionally regulating alginate biosynthesis in Pseudomonas aeruginosa. Cross-complementation studies between the pfrA gene of P. putida and the algQ gene of P. aeruginosa revealed that pfrA can restore mucoidy (alginate production) in an algQ mutant and that algQ could poorly complement a pfrA genomic mutant. It is concluded that PfrA is involved in the positive regulation of siderophore biosynthetic genes in response to iron limitation; furthermore, pfrA and algQ appeared to be interchangeable between P. putida and P. aeruginosa.

This publication has 66 references indexed in Scilit: