β-site specific intrabodies to decrease and prevent generation of Alzheimer's Aβ peptide

Abstract
Endoproteolysis of the β-amyloid precursor protein (APP) by β- and γ-secretases generates the toxic amyloid β-peptide (Aβ), which accumulates in the brain of Alzheimer's disease (AD) patients. Here, we established a novel approach to regulate production of Aβ based on intracellular expression of single chain antibodies (intrabodies) raised to an epitope adjacent to the β-secretase cleavage site of human APP. The intrabodies rapidly associated, within the endoplasmic reticulum (ER), with newly synthesized APP. One intrabody remained associated during APP transport along the secretory line, shielded the β-secretase cleavage site and facilitated the alternative, innocuous cleavage operated by α-secretase. Another killer intrabody with an ER retention sequence triggered APP disposal from the ER. The first intrabody drastically inhibited and the second almost abolished generation of Aβ. Intrabodies association with specific substrates rather than with enzymes, may modulate intracellular processes linked to disease with highest specificity and may become instrumental to investigate molecular mechanisms of cellular events.