Abstract
The focus of this paper is the development of linear, asymptotically correct theories for inhomogeneous orthotropic plates, for example, laminated plates with orthotropic laminae. It is noted that the method used can be easily extended to develop nonlinear theories for plates with generally anisotropic inhomogeneity. The development, based on variational-asymptotic method, begins with three-dimensional elasticity and mathematically splits the analysis into two separate problems: a one-dimensional through-the-thickness analysis and a two-dimensional “plate” analysis. The through-the-thickness analysis provides elastic constants for use in the plate theory and approximate closed-form recovering relations for all truly three-dimensional displacements, stresses, and strains expressed in terms of plate variables. In general, the specific type of plate theory that results from variational-asymptotic method is determined by the method itself. However, the procedure does not determine the plate theory uniquely, and one may use the freedom appeared to simplify the plate theory as much as possible. The simplest and the most suitable for engineering purposes plate theory would be a “Reissner-like” plate theory, also called first-order shear deformation theory. However, it is shown that construction of an asymptotically correct Reissner-like theory for laminated plates is not possible in general. A new point of view on the variational-asymptotic method is presented, leading to an optimization procedure that permits a derived theory to be as close to asymptotical correctness as possible while it is a Reissner-like. This uniquely determines the plate theory. Numerical results from such an optimum Reissner-like theory are presented. These results include comparisons of plate displacement as well as of three-dimensional field variables and are the best of all extant Reissner-like theories. Indeed, they even surpass results from theories that carry many more generalized displacement variables. Although the derivation presented herein is inspired by, and completely equivalent to, the well-known variational-asymptotic method, the new procedure looks different. In fact, one does not have to be familiar with the variational-asymptotic method in order to follow the present derivation.

This publication has 16 references indexed in Scilit: