Squid retinochrome.

Abstract
Retinochrome is a photosensitive pigment located primarily in the inner portions of the visual cells of cephalopods. Its absorption spectrum resembles that of rhodopsin, but its chromophore is all-trans retinal, which light isomerizes to 11-cis, the reverse of the situation in rhodopsin. The 11-cis photoproduct of retinochrome slowly reverts to retinochrome in the dark. The chromophoric site of retinochrome is more reactive than that of most visual pigments: (a) Hydroxylamine converts retinochrome in the dark to all-trans retinal oxime + retinochrome opsin. (by Sodium borohydride reduces it to N-retinyl opsin. (c) Lambda max of retinochrome shifts from 500 to 515 nm as the pH is raised from 6 to 10, with a loss of absorption above pH 8; meanwhile above this PH a second band appears at shorter wavelengths with lambda max 375 nm. These changes are reversible. (d) If retinochrome is incubated with all-trans 3-dehydroretinal (retinal2) in the dark, some 3-dehydroretinochrome (retinochrome2, lambda max about 515 nm) is formed. Conversely, when retinochrome2, made by adding all-trans retinal2 to bleached retinochrome or retinochrome opsin, is incubated in the dark with all-trans retinal some of it is converted to retinochrome. Retinal and 3-dehydroretinal therefore can replace each other as chromophores in the dark.