FMRFamidelike peptides of homarus americanus: Distribution, immunocytochemical mapping, and ultrastructural localization in terminal varicosities

Abstract
The distribution of FMRFamidelike peptides was studied in the nervous system of the lobster Homarus americanus by using immunocytochemical and radioimmunological techniques. By radioimmunoassay FMRF-amidelike immunoreactivity (FLI) was found in low levels (ca. 1 pmol/mg protein) throughout the ventral nerve cord and in much higher amounts (60–100 pmol/mg protein) in the neurosecretory pericardial organs. Immunocytochemical studies showed FLI in approximately 300–350 cell bodies, and in distinct neuropil regions, neuronal fiber tracts, and varicose endings. Specificity of the immunostaining was tested by preabsorbing the antiserum with FMRFamide, with peptides having similar carboxyl termini to FMRFamide (Met-enkephalin-Arg-Phe, Phe-Met-Arg-Tyr-amide), with several amidated peptides (α-melanocyte-stimulating hormone, substance P, oxytocin), and with proctolin, a peptide found widely distributed in the lobster nervous system. Of these substances, only FMRFamide blocked the staining. In addition to the pericardial organs, significant levels of FLI were found in neurosecretory regions associated with thoracic second roots and in the connective tissue sheath that surrounds the ventral nerve cord. In all three regions, immunocytochemical studies showed the FLI to be localized to fine fibers and associated terminal varicosities lying close to the surface of the tissue, with no obvious target in their immediate vicinity. When examined at the ultrastructural level, the immunoreactive varicosities of the thoracic second roots and of the ventral nerve cord sheaths were found a few microns from the surface of the tissue and contained electron-dense granules. In the immunoreactive nerve cord sheath endings, in addition to the large, dense granules, small, clear vesicles were found. The appearance and location of these terminals suggest a neurohormonal role for FMRFamidelike peptides in lobsters. The observation that low levels of FLI are found in the hemolymph supports this suggestion. In addition, the localization of FLI to particular neuronal somata, fiber tracts, and neuropil regions suggests possible functional roles for these peptides in (1) integration of visual and olfactory information, (2) function of the anterior and posterior gut, and (3) the control of exoskeletal muscles.