Objective: The aim was to discriminate among several hypotheses of preconditioning of isolated rabbit cardiomyocytes and to determine if ischaemic preincubation would evoke a protective response. Methods: Isolated myocytes were subjected to 5 min of preincubation, in the presence or absence of glucose, and incubated in the presence of 1 mM iodoacetic acid during the final sustained ischaemic period. In a second series, the protein kinase C (PKC) activators phorbol 12-myristate 13-acetate (PMA), ingenol 3, 20-dibenzoate, and thymeleatoxin were added during preincubation. In a third series, preincubation periods were substituted by brief ischaemic pelleting of cells. Final prolonged ischaemic pelleting was preceded by a 30 min postincubation period. Rate and extent of injury was determined by sequential sampling and assessment of trypan blue permeability following 85 mOsM swelling. Results: Myocytes were preconditioned by a 5 min glucose-free preincubation. Addition of iodoacetic acid into the final ischaemic pellet increased the rates of rigor contracture and injury, but did not abolish the protective response. Direct protein kinase C activation with PMA, a non-selective phorbol ester, and ingenol, an ε, δ-PKC isozyme selective activator, protected cells, but thymeleatoxin, an α,β,γ-PKC isozyme selective activator, did not. A 10 min ischaemic preincubation preconditioned, but the protection was not enhanced when ischaemia was extended to 30 min, or when PMA was included during the initial ischaemic preincubation. Adenosine partially inhibited the response. Conclusions: (1) Preconditioning of isolated myocytes is not dependent on glycolysis or glucose transport. (2) Preconditioning appears dependent on activation of the ε-PKC isoformn. (3) Ischaemia is capable of preconditioning isolated myocytes in vitro, and initiation of this effect is modified by simultaneous additional of adenosine but not by direct protein kinase C activation with PMA. Induction of protection by PMA and ingenol shows that protection requires protein kinase C activation, but direct potassium channel activation by regulatory G proteins is not critical. Cardiovascular Research 1994;28:1700-1706